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Abstract. We study the production amplitude for the reaction NN → NNπ up to next-to-leading order in
chiral perturbation theory using a counting scheme that takes into account the large scale introduced by the
initial momentum. In particular, we investigate a subtlety that arises once the leading loop contributions
are convoluted with the NN wave functions as demanded by the non-perturbative nature of the NN

interaction. We show how to properly identify the irreducible contribution of loop diagrams in such type
of reaction. The net effect of the inclusion of all next–to–leading-order loops is to enhance the leading
rescattering amplitude by a factor of 4/3, bringing its contribution to the cross-section for pp→ dπ+ close
to the experimental value.

PACS. 21.30.Fe Forces in hadronic systems and effective interactions – 12.39.Fe Chiral Lagrangians –
25.10.+s Nuclear reactions involving few-nucleon systems – 25.40.Ve Other reactions above meson pro-
duction thresholds (energies > 400MeV)

1 Introduction

The highly accurate data for pion production in nucleon-
nucleon collisions close to the production threshold are
a challenge for theoreticians. When the first close-to-
threshold data for the total cross-section of the reac-
tion pp → ppπ0 appeared in 1990, existing models fell
short by a factor of 5–10 [1,2]. Many different mecha-
nisms were proposed to cure this discrepancy: heavy me-
son exchanges [3], (off-shell) pion rescattering [4,5], exci-
tations of baryon resonances [6], and pion emission from
exchanged mesons [7]. The total cross-sections for the re-
actions pp → pnπ+ and pp → dπ+, on the other hand,
could always be described within a factor of 2 —the am-
plitude is dominated by the isovector rescattering contri-
bution [1]. For a recent review, see ref. [8].

To resolve the situation various groups started to in-
vestigate NN → NNπ using chiral perturbation theory
(ChPT). As an effective field theory (EFT) it is to be free
of any ambiguities and people expected that now the rel-
evant physics of NN → NNπ could be identified. As a
big surprise to many, however, it turned out that, when
naively using the original power counting by Weinberg [9],
the discrepancy between theory and data became even
larger at next-to-leading order (NLO) for pp→ ppπ0 [10]
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as well as for pp → dπ+ [11]. At the same time it was
already realized that a modified power counting is neces-
sary to properly take care of the large momentum trans-
fer characteristic for pion production in NN collisions,
however, when applied in its original formulation the re-
sults were basically the same for neutral [12] as well as
charged pions [13]. Even worse, the corrections at one-
loop order (next–to–next-to-leading order (N2LO) in the
standard counting) turned out to be even larger than the
NLO corrections, indicating a divergence of the chiral ex-
pansion [14,15].

Recently, there were two developments: one that fo-
cused on some technical aspects related to the evaluation
of the matrix elements [16,17] and another regarding the
power counting for the large momentum transfer reac-
tions. Formal inconsistencies of the naive power count-
ing using the heavy baryon scheme were pointed out in
ref. [18]. In addition, the ideas formulated in refs. [12,13]
were further developed and improved —it was especially
recognized how to properly estimate loop contributions.
This scheme was implemented in refs. [19,20]— the es-
sential features are described in detail below. The basic
conclusion was that an ordering scheme exists for the re-
actions NN → NNπ that can lead to a convergent series.
However, so far, full calculations (including the distortions
due to the NN interactions) within this scheme exist only
for the production of p-wave pions [19].
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b)a) c) d)
Fig. 1. Leading loop diagrams for NN → NNπ. Here dashed lines denote pions and solid lines denote nucleons.

In ref. [20] it was demonstrated by explicit evaluation
of the leading loop contributions (shown in fig. 1(b)-(d))
how the presence of the large momentum scale influences
loops. The central findings of that work were that it is pos-
sible to define an ordering scheme for NN → NNπ, but
some loops are to be promoted to significantly lower or-
ders compared to what is expected from Weinberg’s origi-
nal counting. Reference [20] left two questions unanswered
that we will address in this paper:

– For the reaction channel pp → ppπ0 the sum of all
leading loops canceled; the origin of this cancellation
could not be identified;

– For the channel pp → dπ+ the sum of diagrams of
fig. 1(b)-(d) gave a finite answer. However, as pointed
out recently in ref. [21], the corresponding amplitudes
grow linearly with increasing final NN relative mo-
mentum. This behavior leads to a large sensitivity to
the final NN wave function, once the convolution of
those with the transition operators is evaluated as de-
manded by the non-perturbative nature of the NN
interaction. The solution to this problem proposed in
ref. [21] is to include a new counter term at leading or-
der to absorb this unphysical behavior. However, chiral
symmetry does not allow for such a structure (see ap-
pendix for details).

As we will show in this paper, the solution to both ques-
tions is related and at the same time sheds some light
on the concept of reducibility in pion reactions on few-
nucleon systems.

We further demonstrate that the net effect of the in-
clusion of the NLO loops, shown in fig. 1, is to enhance the
leading rescattering amplitude by a factor of 4/3, bringing
its contribution to the cross-section for pp→ dπ+ close to
the experimental value.

2 Power counting and the concept of

reducibility

Already the existence of nuclei shows that perturbation
theory is insufficient to properly describe two-nucleon sys-
tems: only an infinite sum of diagrams can produce a pole
in the S-matrix. To bring this observation in line with
power counting, Weinberg proposed to classify all possible
diagrams according to the concept of reducibility [22–24]:
those diagrams that have a two-nucleon cut are called re-
ducible. Those which do not are called irreducible. The

latter make up the potential that is to be constructed ac-
cording to the rules of ChPT. The former are then gener-
ated by solving the Schrödinger equation, using the men-
tioned potential as kernel. This scheme acknowledges that
the two-nucleon cut contributions are enhanced compared
to the irreducible parts.

It was also Weinberg who gave a recipe how to cal-
culate processes on few-nucleon systems with external
probes [9]: here the transition operators are to be calcu-
lated using ChPT. Then those transition operators must
be convoluted with the appropriate NN wave functions
—in full analogy to the so-called distorted-wave Born ap-
proximation traditionally used in phenomenological calcu-
lations [1].

Therefore, it is necessary to disentangle those diagrams
that are part of the wave function from those that are part
of the transition operator. In complete analogy to NN
scattering described above, the former are called reducible
and the latter irreducible. Also here the distinction stems
from whether or not the diagram shows a two-nucleon
cut. Thus, in accordance to this rule, the one-loop dia-
grams shown in fig. 1(b)-(d) are irreducible, whereas dia-
grams (a) seem to be reducible. However, it will be the cen-
tral finding of this work that diagrams (a) contain a gen-
uine irreducible piece due to the energy dependence of the
leading N̄Nππ vertex, the so-called Weinberg–Tomozawa
term (WT). Specifically, the energy-dependent part of the
WT vertex cancels one of the intermediate nucleon prop-
agators, resulting in the irreducible part of diagrams (a).

As mentioned in the introduction, the power counting
needs to be modified in order to be applicable for NN →
NNπ. The reason for this necessity is the magnitude of the
nucleon center-of-mass momentum ~p required to produce
a pion at rest in NN collisions. It is given by

|~p | =
√

mπ(M +mπ/4) , (1)

with M = 939MeV and mπ = 139.6MeV denoting the
nucleon and pion mass, respectively. Equation (1) ex-
hibits the important feature of the reaction NN → NNπ,
namely the large momentum mismatch between the ini-
tial and the final nucleon-nucleon state. This leads to a
large invariant (squared) momentum transfer t = −Mmπ

between incoming and outgoing nucleons. The appearance
of the large momentum scale

√
Mmπ in pion production

demands a change in the chiral power counting rules, as
pointed out already in refs. [12,19]. In addition, it seems
compulsory to include the Delta-isobar as an explicit de-
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Fig. 2. Tree level diagrams that contribute at leading ((a) and
(b)) and next-to-leading order (c) to NN → NNπ. The double
line denotes a ∆-isobar. Note, in diagrams (b) and (c) —for
illustration— with the one-pion exchange only one part of the
NN and NN → N∆ potential is shown.

gree of freedom, since the delta-nucleon mass difference
∆ = 293MeV is comparable to the external momentum
p '
√
Mmπ = 362MeV. The hierarchy of scales

mπ ¿ p ' ∆¿M , (2)

suggested by this feature, is in line with findings within
meson exchange models where the Delta-isobar gives sig-
nificant contributions even close to the threshold [25,26]1.
The natural expansion parameter therefore is

χ =
p

M
=

√

mπ

M
. (3)

As a result at leading order only tree level diagrams con-
tribute to the transition operator (diagrams (a) and (b)
of fig. 2). Already at next-to-leading order —in addition
to the first diagram that involves a ∆-isobar (diagram (c)
of fig. 2)— the first loops appear (see fig. 1). As a conse-
quence of the two scales p and mπ given in eq. (2) there
exists a dimensionless parameter that is of order χ, namely
mπ/p, that can appear as the argument of non-analytic
functions as a result of the evaluation of loop integrals.
Thus, each loop now contributes not only to a single or-
der, but to all orders higher than the one where it starts
to contribute [8]. In this work we only consider the leading
parts of the loops in fig. 1 that start to contribute at NLO.

At threshold only two amplitudes are allowed to con-
tribute to the reaction NN → NNπ, namely A11 and
A10, where we used the notation ATiTf to label the to-
tal isospin of the initial (Ti) and final (Tf ) NN -pair. The
third amplitude allowed by the standard selections rules
—A01— has to have at least one p-wave in one of the final
subsystems. To the reactions pp → ppπ0 and pn → ppπ−

only A11 and to NN → dπ only A10 contribute at thresh-
old, whereas both A11 and A10 contribute to the reaction
pp→ pnπ+.

The only transitions that are allowed to contribute
near threshold are 3P0 → 1S0s for A11 and 3P1 → 3S1s
for A10, where small letters denote the pion angular mo-
mentum with respect to the NN system and the NN par-
tial waves are labeled with the standard notation 2S+1LJ .

1 For the channel pp → ppπ0 strong support for an impor-
tant role played by the ∆-isobar was given by a partial-wave
analysis [27].

Those lead to the following amplitude structures [8]:

M = iA11

(

(~S · ~p ) I ′
)

+A10

(

(~S × ~p ) · ~S ′
)

(4)

with I ′ = (χ†4σy(χ
T
3 )

†)/
√
2 and ~S = (χT1 σy~σχ2)/

√
2

and ~S ′ = (χ†3~σσy(χ
†
4)
T )/
√
2, where the χ1,2 (χ3,4) de-

note spinors for the incoming (outgoing) nucleons. For a
deuteron in the final state we need to use

M = Ã10

(

(~S × ~p ) · ~εd ∗
)

, (5)

where now ~εd
∗ denotes the deuteron polarization vector

and Ã10 the convolution of the production operator with
the deuteron wave function —although the transition op-
erators for A10 and Ã10 are the same, the matrix elements
in general have different units. We come back to the eval-
uation of the deuteron cross-section in sect. 4. The am-
plitude in eq. (4) is normalized such that for the total
cross-section for pp→ pnπ+ we have

σtot(pp→ pnπ+)=
M3p

16π3
√
s

∫

dq′q′ 2p′

ωq′

(

|A11|2+2 |A10|2
)

,

(6)
where q′ denotes the cms momentum of the outgoing π,
p′ the relative momentum of the outgoing pn pair, s the
invariant energy of the system, and ωq =

√

q2 +m2
π. Anal-

ogously, one finds for the total cross-section for pp→ dπ+

σtot(pp→ dπ+) =
2MdM

2

πs
q′p
∣

∣Ã10

∣

∣

2
, (7)

where Md denotes the deuteron mass.
If we neglect all NN distortions, we get for the leading

rescattering contribution (fig. 2(a)) at threshold [20]

A2a
11 = 0 ,

A2a
10 = 2

(

2mπ

4f2
π

)

1

p2 −m2
π

(

gA
2fπ

)

= − gAmπ

2~p 2f3
π

(1 +O(χ)), (8)

where we used that the πN → πN amplitude to lead-
ing order contains not only the standard WT term that
scales as the sum of the incoming and outgoing pion ener-
gies, here equal to mπ and mπ/2, respectively, but also its
recoil correction equal to ~p 2/2M = mπ/2. The relevant
terms of the underlying Lagrangian density are given in
the appendix. Note that with a value of 2mπ/4f

2
π the WT

vertex including the recoil correction as it appears in the
NN → NNπ amplitude takes exactly the value it has for
elastic πN scattering at threshold.

3 Evaluation of loops

In the reaction NN → NNπ the energies of the initial
nucleons are of order ~p 2/2M ∼ mπ and the momenta are
of order p. In irreducible loops, on the other hand, both
energies and momenta are of order p (see appendix E of
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ref. [8] for details). As a consequence in the evaluation of
diagrams (b),(c), and (d) of fig. 1 the nucleon recoil terms
(i.e., the nucleon kinetic energies) can be neglected in the
nucleon propagators, since they scale asmπ. At first glance
this seems to be at variance with the recent finding that
three-body NNπ cuts, that originate from the nucleon
recoils, play an essential role in pion reactions on few-
nucleon systems [28,29]. However, the reactions studied
in these references had very different kinematics, as they
were small momentum transfer reactions, where in typical
kinematics the πNN state was near on-shell. Here, on the
other hand, we are faced with a large momentum trans-
fer reaction: for typical kinematics a πNN intermediate
state is far off-shell. In addition, here there is an additional
kinematical suppression for the πNN cuts: at the cut the
typical pion momentum, which set the scale for the typi-
cal loop momentum, is that of the external pion of order
of at most mπ. As a consequence, the πNN cuts do not
contribute before N5LO to the reaction NN → NNπ [8].

By comparison to the full results of ref. [14], in ref. [20]
it was shown that it is allowed to expand the integrand of
the loop integrals before evaluation in powers of

√

mπ/M .
As a consequence, it was possible to express the leading
contribution of all loops corresponding to diagrams (b)-(d)
of fig. 1 in terms of a single integral

I0(p0, ~p
2)=

1

i

∫

d4l

(2π)4
1

(l0 − iε)(l2 −m2
π)((l + p)2 −m2

π)
.

(9)

One finds I0(p0, ~p
2) = I0(~p

2)(1+O(χ)) = 1/(16
√

~p 2)(1+
O(χ)). The assumption of threshold kinematics (all out-
going momenta vanish) simplifies the operator structure
significantly and we can write —neglecting for the moment
the distortions from the NN interaction— in order [20]:

A1b+1c+1d
10 =

g3
A

16f5
π

(−2 + 3 + 0) ~p 2I0(~p
2) =

g3
A|~p |

256f5
π

,

A1b+1c+1d
11 =

g3
A

16f5
π

(−2 + 3− 1) ~p 2I0(~p
2) = 0 . (10)

Note, here and in what follows we write equalities al-
though we dropped terms of higher order in χ. As men-
tioned in the introduction, the sum of the NLO loops van-
ishes in case of A11. We will give an explanation for this
cancellation below. Let us now concentrate on A10. In or-
der to compare the result of eq. (10) to data, the tran-
sition operators need to be convoluted with appropriate
NN wave functions. The convolution integrals that arise
necessarily involve non-vanishing ~p ′, denoting the outgo-
ing NN relative momenta, even if we still work at thresh-
old. However, the structure of the loop integral I0 is such
that —to leading order— only ~p− ~p ′ appears in the inte-
grals and thus one can directly generalize the expressions
of eqs. (10). As was argued in ref. [21], this implies that
for large ~p ′ the contributions from the loops grows lin-
early with |~p ′|. When it then comes to the convolution of
those operators with NN wave function this linear growth
of the transition operators leads to a large sensitivity to
the deuteron wave functions. However, there should be no

sensitivity to the particular wave functions used, for off-
shell quantities are not observable [30,31]. On the other
hand, the chiral Lagrangian does not allow for a counter
term to compensate this linear growth —see the appendix
for details. The solution given in ref. [21], namely the in-
clusion of a counter term at leading order, is therefore not
consistent with the effective field theory used. However, as
we will show, the loops with the unwanted behavior will
be canceled exactly by an irreducible piece of diagrams
(a) of fig. 1. We proceed as follows: we first show this can-
cellation to one-loop order without distortions. Then, we
generalize the result to the inclusion of the full NN wave
functions.

We still assume threshold kinematics and now turn to
the evaluation of diagrams (a) of fig. 1. In doing so one first
has to realize that in contrast to the irreducible diagrams
discussed in the beginning of this section, energies in the
diagrams with a two-nucleon cut are of the order of the
external energies (l0 ∼ p2/2M ∼ mπ). Therefore, there is
a priori no reason to neglect the nucleon recoils that are
of the order of mπ. We thus get for the full expression for
the first diagram of fig. 1(a), up to higher orders,

A1a1
10 = i

3g3
A

32f5
π

×
∫

d4l

(2π)4

[

l0+mπ−(2~p+~l) ·~l/(2M)
]

(

l0−mπ

2 −
(~l+~p )2

2M +iε
)(

−l0+mπ

2 −
(~l+~p )2

2M + iε
)

× (~l · (~l + ~p ))

(l2 −m2
π)((l + p)2 −m2

π)
,

A1a1
11 = 0 , (11)

where we included the recoil correction to both the WT
term in the numerator as well as the nucleon energies in
the denominator, in line with the discussion above. The
vanishing A1a1

11 reproduces the well-known result that the
WT interaction does not contribute to the leading rescat-
tering diagram in pp→ ppπ0.

In order to proceed we rewrite the first term in the
numerator of the above integral as

[

l0+mπ−
(2~p+~l) ·~l

2M

]

=

[(

l0−
mπ

2
− (~p+~l)2

2M

)

+ 2mπ

]

,

where we used that at threshold p2/M = mπ. The first
term now exactly cancels the first nucleon propagator and
we are left with an expression that no longer has a two-
nucleon cut —it is irreducible. In this irreducible piece we
can neglect the recoil corrections in the remaining nucleon
propagator —cf. the discussion at the beginning of this
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Fig. 3. Illustration of the kind of topologies that corresponds to the irreducible structures (denoted by the filled box on the
propagator that gets canceled by the energy dependence of the πN → πN vertex) that emerge from the convolution of the
energy-dependent rescattering term with various contributions to the NN potential.

section— and get

A1a1
10 = i

3g3
A

32f5
π

∫

d4l

(2π)4

{

(~l · (~l + ~p ))

(−l0+iε)(l2−m2
π)((l + p)2−m2

π)

+
2mπ

(

l0−mπ

2 −
(~l+~p )2

2M +iε
)(

−l0 + mπ

2 −
(~l+~p )2

2M + iε
)

× (~l · (~l + ~p ))

(l2 −m2
π)((l + p)2 −m2

π)

}

. (12)

Up to higher orders the first term gives

A
1a1(irr)
10 = −

(

3

4

)

g3
A

16f5
π

~p 2I0(~p
2) = −3

4

g3
A|~p |

256f5
π

, (13)

where the label (irr) indicates that this is only the irre-
ducible piece of the diagram. Analogous considerations for
the second diagram of diagrams (a) of fig. 1 give

A1a2
10 = i

g3
A

32f5
π

∫

d4l

(2π)4

{

(~l · (~l+~p ))
(−l0+iε)(l2−m2

π)((l+p)
2−m2

π)

− 2mπ
(

l0+
mπ

2 −
(~l+~p )2

2M +iε
)(

−l0+mπ

2 −
(~l+~p )2

2M + iε
)

× (~l · (~l + ~p ))

(l2 −m2
π)((l + p)2 −m2

π)

}

. (14)

The leading piece of the first term gives

A
1a2(irr)
10 = −

(

1

4

)

g3
A

16f5
π

~p 2I0(~p
2) = −1

4

g3
A|~p |

256f5
π

. (15)

Thus, we get

A
1a1(irr)+1a2(irr)+1b+1c+1d
10

=
g3
A

16f5
π

(

−3

4
− 1

4
− 2 + 3 + 0

)

~p 2I0(~p
2) = 0 ,

A
1a1(irr)+1a2(irr)+1b+1c+1d
11

=
g3
A

16f5
π

(0 + 0− 2 + 3− 1) ~p 2I0(~p
2) = 0 , (16)

where we repeat the results for A11 from above for compar-
ison. Thus, in both channels that contribute at the produc-
tion threshold the sum of all irreducible loops that appear
at NLO cancels2. On the other hand, the remaining pieces
in the expressions for A1a

10 exactly agree to the convolution
of the leading rescattering contribution with the one-pion
exchange, however, with the N̄Nππ WT vertex put on-
shell. Thus, the WT vertex takes the value 2mπ/(4f

2
π)

—cf. eq. (8). The two-nucleon propagators in these inte-
grals have a unitarity cut and it is this cut contribution
that should dominate the integral— in line with Wein-
berg’s original classification as reducible and irreducible.
In other words, these pieces are indeed dominated by the
reducible piece3.

Next, we show that for all ingredients of the NN po-
tential but the one-pion exchange the choice of an on-shell
N̄Nππ vertex is of sufficient accuracy. To this end, we re-
mind the reader that the integral corresponding to the
irreducible pieces of this first diagram of fig. 1(a) had a
structure like diagram (b) of that figure. This is illustrated
in part (a) of fig. 3. At leading order in the NN poten-
tial there is besides the one-pion exchange also a contact
interaction. The convolution of the rescattering diagram
with the WT vertex (diagram (a) in fig. 2) with this part
of the NN potential we can again decompose into a re-
ducible piece with the πN → πN vertex on-shell and an
irreducible piece that takes a structure of an integral with
one nucleon less (see part (b) of fig. 3); this diagram, how-
ever, does not contribute below N4LO and is therefore ir-
relevant to the order we are working. Thus, all that is to be
kept is the convolution of the on-shell rescattering contri-
bution with the contact NN interaction —in line with the
findings of ref. [16]. At NLO in the NN potential there are
pion loops. Then, the irreducible piece of the convolution
of the leading rescattering contribution with this piece re-
sults in a two-loop diagram (for a particular example, see

2 Using techniques similar to the extraction of the irreducible
part from the 2π-exchange box graph [32], N. Kaiser has ob-
tained the same complete cancellation for A11 (unpublished).

3 In addition, the relative strength as well as sign in these
terms (−3 for the pion exchange in the final Tf = 0 channel
compared to +1 for the pion exchange in the initial Ti = 1
channel) are in agreement with the expectation values of the
isospin parts of the one pion exchange in the relevant isospin
channel, since 〈TT3|~τ1 · ~τ2|TT3〉 = 2T (T + 1)− 3.
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Fig. 4. Leading loop diagrams for NN → NNπ, convoluted with the NN T -matrix, denoted by the ellipse. Here dashed lines
denote pions and solid lines denote nucleons. The filled box on the nucleon propagators of the diagrams (a) indicate that only
the irreducible piece is to be taken. The reducible part gets absorbed into the wave function.

part (c) of fig. 3) that does not contribute up to N3LO.
Thus, to the order we are working we can safely put the
WT vertex on-shell for the convolution of any piece of the
NN potential with the leading rescattering contribution.

What remains to be shown is that the cancellation of
eq. (16) survives (to the given order) the convolution with
the full wave functions. This generalization is straightfor-
ward. The corresponding diagrams are shown in fig. 4 for
the inclusion of the final-state interaction that we want
to discuss in detail. The argument in case of the initial-
state interaction is completely analogous and will not be
given. Note that only the irreducible parts of the diagrams
(a) are to be included —the reducible pieces get absorbed
into the wave functions. Let k denote the integration vari-
able of the convolution integral that we chose equal to
the four-momentum of one of the nucleons. As argued in
the previous paragraph, the integral will be dominated
by energies close to the corresponding on-shell energies.
This sets the scale for k —especially we can safely as-
sume k0 ¿ p. This is all that is needed to neglect k0 in
the nucleon propagator of the pion loop integrals. On the

other hand, in these loops ~k only enters as ~p−~k. Thus, the
terms that enter in the convolution integrals with the final-
state interaction to the order we are working are simply

given by replacing ~p by ~p− ~k in eqs. (10), (13), and (15).
This will obviously not change the relative strength of
the individual diagrams —the cancellation survives the
convolution with the wave functions. We, therefore, con-
clude that up to next-to-leading order all irreducible pion
loops in the transition operator cancel with the only effect
that the WT vertex in the rescattering diagram is to be
put on-shell.

4 Results

Since the NLO diagrams discussed in this work contribute
only to A10, we will now discuss their impact on the reac-
tion pp→ dπ+ that is fully determined by that amplitude.
The cross-section data for this reaction near threshold is
traditionally parameterized as

σ = αη + βη3 , (17)

where Coulomb effects were neglected. To the reaction
pn → dπ0 both α and β contribute with only half their
strength [33]. Here, η denotes the outgoing pion momen-
tum in units of its mass. The first term gives the s-wave
strength, whereas the second one denotes the p-wave con-
tribution (as well as some possible energy dependencies of
the s-wave [21]).

Before comparison with experiment is possible, the
transition operators are to be convoluted with appropriate
NN wave functions. Here we use basically the same for-
malism as described in ref. [29]4 and thus we do not give
any formulas in detail. For the NN distortions we use the
CD-Bonn potential [35] and use the same parameters as in
ref. [29]. To calculate the leading-order (LO) rescattering
process (diagram (a) of fig. 2) we use the standard expres-
sion for the WT term in threshold kinematics —thus we
put 3/2mπ at the vertex [1,36]. In addition, we also eval-
uate the direct contribution (diagram (b) of fig. 2). Since
we derived the transition operator in threshold kinematics
we can only calculate α. We obtain

αLO = 131µb. (18)

This number is dominated by the rescattering contribu-
tion; switching off the direct term α is lowered by 30%
to αWT, LO = 101µb. This value is consistent with those
given in ref. [36]. Note that the direct term is known to
be quite model dependent [36] and is small because of a
cancellation of individually sizable terms. Clearly, such a
cancellation cannot be captured by the counting scheme.
Still, we point out that in an EFT scheme as used here all
terms at a given order have to be retained.

As outlined above, in order to include the NLO con-
tributions all we need to do is to replace the (3/2)mπ

in the WT vertex by 2mπ —or, stated differently, to scale
the given results for αWT, LO by a factor (4/3)2. Thus, for
the rescattering piece we get at NLO αWT, NLO = 182 µb,
whereas the full result including the direct term is

αNLO = 220µb. (19)

4 For more details, see appendix of ref. [34].
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Fig. 5. Comparison of our results to experimental data for
NN → dπ. The dashed and dash-dotted curves show the LO
results, where for the latter the direct contribution was omit-
ted. The solid and dotted line show the results at NLO, where
in the latter the direct term was omitted. The estimated the-
oretical uncertainty (see text) is illustrated by the filled box.
The data is from refs. [33] (open circles), [37] (filled circles)
and [38] (filled squares). The first data set shows twice the
cross-section for pn→ dπ0 and the other two the cross-section
for pp→ dπ+.

We checked that using different models for the NN dis-
tortions changed the rescattering contribution by about
10%, in line with previous findings [36].

In fig. 5 we compare the results of our calculation to the
experimental data5. One clearly sees that going from LO
to NLO improves the description of the data. Note also
that even a change by about a factor of 2 in the cross-
section is in line with what is expected from the count-
ing: after all the expansion parameter for the amplitude
is χ = 0.4. At the same time the relatively large expan-
sion parameter implies a sizable theoretical uncertainty in
αNLO that we estimate to be of the order of 2χ2 ∼ 30%
as indicated by the filled box in fig. 5. Thus, a calculation
to NNLO is clearly called for.

The calculation presented is complete up to NLO from
the point of view of standard chiral perturbation theory,
where only nucleons and pions are treated as dynami-
cal degrees of freedom —the effects of baryon resonances
are absorbed in the counter terms. However, the order-
ing scheme given in eq. (2) calls in addition for an inclu-
sion of the Delta-isobar as dynamical degree of freedom.
A typical diagram is depicted in fig. 2(c) —in the cal-
culation the full NN → N∆ transition amplitude needs
to be included. The evaluation of these diagrams needs
as input the NN → N∆ transition potential consistent
with chiral symmetry. The corresponding parameters are
to be fixed from a fit to NN data. Such a fit has not
yet been performed and thus we postpone the evaluation

5 Note that the data from pn → dπ0 [33] are considerably
lower than those for pp → dπ+ [37,38]. It appears unclear
whether this discrepancy is due to systematic uncertainties
(not shown in the figure) or due to other sources [39].

of diagram (c) of fig. 2 to a later work. Note, however,
that model calculations show that the contribution of the
Delta-isobar is not more than 10% in the amplitude [26].

5 Summary and conclusions

We have shown that the proper set of diagrams that
contributes to the transition operator for the reaction
NN → NNπ at NLO in chiral perturbation theory is
given by the diagrams of fig. 2, however, with the N̄Nππ
vertex in diagram (a) put on-shell. To get to realistic re-
sults these operators are to be convoluted with properNN
wave functions. The irreducible chiral loops that arise at
this order exactly cancel those terms that arise from the
off-shell parts of the WT vertex. This cancellation is re-
quired for formal consistency of the whole scheme, since
the mentioned diagrams show a linear growth with respect
to the outgoing NN momentum. Such a growth would
have led to a large sensitivity to the NN wave function,
when the convolution with the final-state interaction is
calculated. This, however, would have been in conflict with
general arguments.

This at the same time also explains, why the sum of
all loops has to vanish at next-to-leading order for the
reaction pp → ppπ0: in this channel there is no leading
rescattering contribution. Thus, there is also nothing that
could cancel the linear divergence discussed above. The
consistency of the formalism therefore demands the sum
of all loops to vanish.

As a result of our findings we can conjecture a general
recipe on how to deal with pion reactions in a nuclear envi-
ronment in the presence of time derivatives in vertices: one
has to calculate all diagrams up to a given order, including
those that are formally reducible. Then the energy depen-
dence in the vertices is used to cancel one of the nucleon
propagators. This produces an irreducible piece that is to
be part of the transition operator as well as a reducible
piece, where, however, the energy dependence of the ver-
tices is replaced by the corresponding on-shell value6.

This new rule has significant impact on the role of
isoscalar rescattering in NN → NNπ (diagram (a) of
fig. 2, but with the leading isoscalar interaction used for
πN → πN). Empirically, the isoscalar πN scattering
length is known to be very small. Theoretically, it turned
out that this smallness is a consequence of an efficient
cancellation amongst individually large terms [41]. Due to
the energy dependence of the πN → πN operators, how-
ever, when evaluated in the kinematics relevant for pion
production in NN collision this cancellation is much less
efficient leading to a significant contribution from isoscalar
rescattering [12,10]. If, on the other hand, the above rule
is used, isoscalar rescattering enters with the strength of
the very small isoscalar πN scattering length and thus
would give a negligible contribution.

6 Note that in the presence of quadratic time derivatives at
individual vertices or of the simultaneous appearance of several
time derivatives in one diagram, additional vertices are to be
included [40].
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We have demonstrated that the net effect of the inclu-
sion of the NLO loops, shown in fig. 1, is to enhance the
leading rescattering amplitude by a factor of 4/3, bringing
its contribution to the cross-section for pp→ dπ+ close to
the experimental value.

The next steps will be to evaluate the NN → NNπ
amplitudes to N2LO for both s- and p-wave pions for all
possible amplitudes. At this order two counterterms en-
ter for the pion s-waves and one for the pion p-waves
both accompanied by S-wave nucleons in the final state.
To this order p-wave pions together with P -wave nucle-
ons are parameter-free predictions. On the other hand,
there are in total more than 40 observables7 measured for
the reaction channels pp → ppπ0 [42], pp → pnπ+ [43],
pp → dπ+ [44] and pn → ppπ− [45]. Up to now only
one phenomenological calculation was compared to this
large amount of data [46,8] and it was found that all
charged channels are well described, whereas there are sig-
nificant discrepancies for the neutral pions. It will there-
fore be of strong interest to see if the new structures
that emerge from the chiral Lagrangian are able to cure
these discrepancies.

Once the described channels are analyzed within
ChPT one should move ahead to consistently inves-
tigate the isospin violating observables measured re-
cently, namely the forward-backward asymmetry in pn→
dπ0 [47] as well as the total cross-section for dd →
απ0 [48]. First steps in this direction were taken in
refs. [49,50].
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Appendix A. Lagrange densities and vertices

The starting point is an appropriate Lagrangian density,
constructed to be consistent with the symmetries of the
underlying more fundamental theory (in this case QCD)
and ordered according to a particular counting scheme.
Omitting terms that do not contribute to the order we
will be considering here, we therefore have for the rele-
vant terms of the leading and next–to–leading-order La-

7 This large number is achieved by fully exploiting the 5-
dimensional phase space [42].

grangian in sigma gauge for the pion field [23]

L=1

2
∂µπ∂

µ
π− 1

2
m2
ππ

2+
1

6f2
π

[

(π · ∂µπ)2−π2(∂µπ · ∂µπ)
]

+N †

[

i∂0−
1

4f2
π

τ · (π × π̇)

]

N+
gA
2fπ

N†
τ · ~σ

·
(

~∇π+
1

2f2
π

π(π ·~∇π)
)

N+
1

2mN

[

N†~∇2N+Ψ †
∆
~∇2Ψ∆

]

+
1

8MNf2
π

(

iN†
τ · (π × ~∇π) · ~∇N + h.c.

)

− gA
4mNfπ

[

iN†
τ · π̇~σ · ~∇N+h.c.

]

− hA
2mNfπ

[

iN†
T · π̇~S · ~∇Ψ∆+h.c.

]

−d1

fπ
N†(τ · ~σ · ~∇π)N N †N

− d2

2fπ
εijkεabc∂iπaN

†σjτbN N†σkτcN + · · · , (A.1)

where fπ denotes the pion decay constant in the chiral
limit, gA is the axial-vector coupling of the nucleon. hA is

the ∆Nπ coupling, and ~S and T are the transition spin
and isospin matrices, normalized such that

SiS
†
j =

1

3

(

2δij − iεijkσk
)

,

TiT
†
j =

1

3

(

2δij − iεijkτk
)

.

(A.2)

The dots symbolize that what is shown are only those
terms that are relevant for the calculations presented. As
demanded by the heavy baryon formalism, the baryon
fields N and Ψ∆ are the velocity-projected pieces of the
corresponding relativistic fields; e.g., N = 1/2(1+ 6v)ψ,
where vµ = (1, 0, 0, 0) denotes the nucleon 4-velocity. The
corresponding vertex functions can be read off directly
from appendix A of ref. [51]. The relevant vertices for the
NN interaction are discussed in ref. [52].

The last two terms in eq. (A.1) show the leading four-
nucleon-pion counter terms. The Pauli principle for the
NN system only allows them to contribute in one fixed lin-
ear combination. The corresponding operator contributes
to pion p-waves in pp → pnπ+ as well as to the leading
three-body force [19,53]. To NN → NNπ at threshold
this operator can only contribute through loops. The lead-
ing four-N -π vertices that contribute there are suppressed
by an additional mπ/M [12,10]. In general, to be in line
with the Goldstone theorem, it is a necessary requirement
that counter terms either contain a derivative acting on
the pions, or scale with m2

π. The latter is a consequence
of the well-known relation m2

π ∝ m̂, where m̂ denotes the
average mass of the light quarks. To be consistent with
chiral symmetry the chiral Lagrangian is only allowed to
have terms analytic in m̂. To absorb the sensitivity to the
wave function discussed in the introduction would require
a counter term that neither contains powers of mπ nor a
derivative acting on the pion field at variance with chi-
ral symmetry.
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